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Abstract
[bookmark: _GoBack]Breast cancer continues to be a leading cause of mortality among women globally, necessitating the development of accurate, efficient, and early diagnostic methodologies to improve patient outcomes and reduce treatment costs. Traditional diagnostic approaches, such as manual interpretation of mammograms or histopathological slides, are often time-consuming, prone to human error, and dependent on the experience of the medical expert. In this context, artificial intelligence (AI) and medical image analysis have emerged as transformative tools in healthcare, especially in oncology. This paper proposes an intelligent hybrid framework that combines deep neural networks (DNNs) with advanced image preprocessing techniques to enhance the accuracy and robustness of breast cancer diagnosis from medical imaging data. The framework is designed to systematically process and analyze digital mammographic or histopathological images through a multi-stage pipeline. Initially, raw images are subjected to a series of preprocessing operations, including denoising, contrast enhancement, normalization, and region-of-interest (ROI) extraction, in order to eliminate artifacts and highlight diagnostically relevant features. These refined images are then used as input for a convolutional neural network (CNN)-based model that is architected to automatically extract complex features and perform high-precision classification of breast tissue into benign or malignant categories. To validate the effectiveness of the proposed framework, extensive experiments are conducted using publicly available breast cancer imaging datasets, including both mammographic and microscopic image modalities. The model is trained and evaluated using cross-validation protocols, and its performance is assessed using a comprehensive set of evaluation metrics such as accuracy, sensitivity, specificity, precision, F1-score, and area under the curve (AUC). Results demonstrate that the hybrid model consistently outperforms conventional machine learning and end-to-end deep learning models by a significant margin, highlighting the benefits of combining handcrafted preprocessing with data-driven feature learning. In addition to improved diagnostic accuracy, the proposed system offers scalability, adaptability to various imaging types, and the potential for integration into real-time clinical diagnostic tools. The findings of this research contribute to the advancement of computer-aided diagnosis (CAD) systems and support the broader application of intelligent hybrid frameworks in the medical imaging domain. Ultimately, this work underscores the transformative potential of integrating image preprocessing and deep neural networks in developing next-generation tools for early and reliable breast cancer detection.
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Introduction
Breast cancer is a global health burden and ranks among the most frequently diagnosed cancers in women, with a significant impact on morbidity and mortality rates. According to the World Health Organization (WHO), breast cancer accounted for approximately 2.3 million new cases and over 685,000 deaths in 2020 alone. The burden is projected to rise further due to aging populations, urbanization, and changes in reproductive behavior. Early detection remains the most effective strategy for reducing mortality, improving treatment outcomes, and increasing survival rates. However, conventional diagnostic procedures such as clinical breast examination, mammography, ultrasound, and histopathology are highly dependent on clinician expertise, prone to subjective interpretation, and often exhibit low sensitivity in dense breast tissues or in resource-limited settings. With the advent of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) algorithms, the landscape of medical diagnostics has witnessed a revolutionary transformation. These techniques are increasingly being deployed to support clinicians in automated detection, classification, and interpretation of breast abnormalities using medical images. Among them, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for extracting hierarchical features from raw images, enabling highly accurate classification and segmentation in various imaging modalities including mammography, histopathology, MRI, and ultrasound [1]. However, deep learning models, despite their strength, often encounter limitations when trained on raw, unprocessed medical images. Issues such as noise, low contrast, artifacts, and irrelevant background structures can obscure pathological features and degrade classification performance. Therefore, image preprocessing techniques including contrast enhancement, noise filtering, segmentation, normalization, and region-of-interest extraction are essential to refine image quality and highlight clinically relevant structures. Nevertheless, standalone preprocessing methods or deep learning models may not be sufficient to guarantee generalizability, especially in diverse clinical environments. To address these challenges, we propose an intelligent hybrid framework that synergistically combines the strengths of image preprocessing and deep neural network architectures for accurate breast cancer diagnosis. As illustrated in Figure 1, the framework follows a multi-stage pipeline: (1) image acquisition and preprocessing, (2) feature extraction using a CNN-based architecture, and (3) classification of tissue samples as benign or malignant. This hybrid approach is designed to maximize diagnostic performance by enhancing the signal-to-noise ratio in the preprocessing phase and leveraging deep learning for robust feature representation and classification.
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Figure 1: Workflow of the Proposed Hybrid Framework for Breast Cancer Diagnosis [2].
The framework is validated on benchmark datasets such as the BreakHis histopathological dataset and Digital Database for Screening Mammography (DDSM). Preprocessing techniques applied include Gaussian filtering, histogram equalization, adaptive thresholding, and morphological operations, which significantly improve image clarity before model training. A performance comparison between the proposed framework and existing models is summarized in Table 1, demonstrating superior results in terms of accuracy, sensitivity, specificity, F1-score, and AUC (Area Under the ROC Curve) [3].
 Table 1: Comparative Performance of the Proposed Framework vs Existing Methods
	Model / Approach
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	F1-Score
	AUC

	Proposed Hybrid Framework
	96.8
	97.2
	96.3
	0.97
	0.99

	CNN (no preprocessing)
	91.4
	90.7
	92.0
	0.91
	0.94

	SVM + Manual Feature Extraction
	87.3
	85.9
	88.7
	0.86
	0.91

	ResNet-50 (Transfer Learning)
	93.5
	94.0
	93.0
	0.93
	0.96


This study contributes to the advancement of computer-aided diagnosis (CAD) systems and demonstrates how an intelligent, modular pipeline can be designed for real-time medical applications. The hybrid framework not only improves interpretability and diagnostic precision but also reduces human workload, supporting scalable screening initiatives in clinical and rural settings.
Research Objective
The primary objective of this research is to design, implement, and evaluate an intelligent hybrid framework that integrates deep neural networks and advanced image preprocessing techniques for the accurate and automated diagnosis of breast cancer from medical images.
To achieve this overarching goal, the following specific objectives are established:
1. To investigate and apply effective image preprocessing techniques that enhance the quality of breast cancer images by reducing noise, improving contrast, normalizing intensities, and segmenting regions of interest, thereby making them suitable for deep learning-based analysis.
2. To develop a convolutional neural network (CNN)-based deep learning architecture capable of automatically extracting high-level discriminative features from preprocessed medical images and classifying them as benign or malignant with high accuracy.
3. To integrate preprocessing and classification stages into a unified hybrid framework that combines the strengths of traditional image processing and modern deep learning methods for improved diagnostic performance.
4. To validate the proposed framework using publicly available benchmark datasets such as BreakHis and DDSM, covering different imaging modalities like histopathology and mammography.
5. To evaluate the model’s performance using comprehensive metrics including accuracy, sensitivity, specificity, precision, F1-score, and AUC, and compare the results against baseline models and state-of-the-art approaches.
6. To ensure scalability, generalizability, and clinical applicability by testing the framework across diverse data sources and imaging conditions, thereby demonstrating its potential integration into real-world clinical decision support systems.
Applications of Artificial Neural Networks (ANNs)
Artificial Neural Networks (ANNs) have emerged as a transformative technology in the fields of biomedical engineering, healthcare informatics, and medical image analysis. Inspired by the architecture of the human brain, ANNs are computational models capable of learning complex, nonlinear relationships between input and output data through interconnected layers of processing units. This inherent ability to model intricate patterns allows ANNs to automatically learn and extract salient features from vast, high-dimensional datasets without the need for manual intervention. As a result, they excel in tasks where conventional algorithms often struggle, especially in domains characterized by variability, noise, and the need for precision such as medical diagnostics. One of the key strengths of ANNs lies in their generalizability across diverse datasets, enabling them to adapt and perform well even when trained on heterogeneous data sources. This characteristic is particularly valuable in healthcare, where patient populations, imaging modalities, and disease presentations can vary significantly. ANNs have found widespread application in a range of healthcare domains, including disease classification, anomaly detection, patient stratification, treatment recommendation, and predictive modeling for outcomes and survival. In the context of breast cancer diagnosis, ANNs have shown tremendous promise by enabling automated, accurate, and reproducible interpretation of medical images such as mammograms, ultrasound scans, magnetic resonance images (MRI), and histopathological slides. These models can outperform traditional statistical and machine learning techniques by uncovering subtle image features that may be imperceptible to the human eye or require years of clinical experience to identify. Moreover, by integrating with preprocessing techniques such as denoising, normalization, and region-of-interest enhancement ANNs can significantly improve the quality of input data, leading to enhanced diagnostic performance [4]. Furthermore, ANNs facilitate scalable solutions that can be deployed in clinical environments with limited access to radiologists or pathologists, thereby addressing critical shortages in medical expertise, particularly in under-resourced regions. Their adaptability to real-time processing and continuous learning also makes them ideal candidates for integration into next-generation intelligent clinical decision support systems (CDSS). Ultimately, the use of ANNs in breast cancer detection exemplifies the convergence of artificial intelligence and medical science, offering a path toward earlier detection, personalized diagnostics, and improved patient outcomes.
Mammogram
Mammographic imaging has long been the cornerstone of early breast cancer detection and diagnosis. As a non-invasive, low-radiation technique using X-rays to image internal breast structures, mammography provides a powerful diagnostic tool capable of revealing pathological changes long before they become clinically evident. In recent decades, the importance of mammograms has been significantly elevated due to their ability to reduce mortality through early detection, timely intervention, and screening-based risk stratification. Within the context of our proposed intelligent hybrid framework, mammographic images form a critical data modality for deep neural network-based classification tasks, especially when complemented by robust preprocessing strategies. In our study, digital mammographic datasets were utilized to assess the performance of the proposed framework in real-world diagnostic settings. These images commonly include views such as the craniocaudal (CC) and mediolateral oblique (MLO), providing comprehensive visualization of the breast tissue. Mammograms typically exhibit grayscale patterns where malignant lesions manifest as spiculated masses, dense calcifications, or distortions in tissue architecture, whereas benign findings may appear as well-circumscribed or low-density formations [5]. 	However, visual interpretation is highly dependent on the radiologist’s expertise and is often subject to fatigue and inter-observer variability, particularly in women with dense breast tissue that can obscure underlying tumors. This inherent variability introduces a level of diagnostic uncertainty, which necessitates the use of automated tools to ensure consistency, objectivity, and enhanced accuracy. The diagnostic value of mammography is unfortunately limited by several technical and physiological challenges. Dense breast tissue, prevalent among younger women, tends to reduce the sensitivity of X-ray–based imaging by masking small lesions or simulating pseudo-pathologies. Furthermore, noise artifacts, limited contrast resolution, and poor ROI (Region of Interest) demarcation further impair the reliability of diagnosis, contributing to false positives and negatives. To mitigate these limitations, our framework applies a multi-phase image preprocessing pipeline that includes noise reduction through Gaussian filters, histogram equalization for contrast enhancement, normalization for intensity scaling, and automated ROI extraction. These preprocessing operations substantially improve the visual clarity and diagnostic relevance of mammographic images before they are input to the deep learning model. As illustrated in Figure 2, the enhanced mammographic images obtained after preprocessing are used as the input for a custom-built Convolutional Neural Network (CNN). The CNN automatically extracts complex feature hierarchies and performs classification to distinguish between benign and malignant breast lesions. This systematic integration of preprocessing and CNN-based learning results in a significant improvement in diagnostic performance [6]. The proposed model is evaluated using a robust 5-fold cross-validation strategy across widely used open-source mammographic datasets, including the Digital Database for Screening Mammography (DDSM) and INbreast.
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Figure 2: Workflow of Mammogram Analysis in the Proposed Framework
To demonstrate the diagnostic significance and classification accuracy achieved through our framework, we present a comparative evaluation in Table 2. The table summarizes key performance metrics such as accuracy, sensitivity, specificity, precision, and AUC across traditional machine learning models, end-to-end deep learning models, and the proposed hybrid framework. Notably, mammographic inputs subjected to preprocessing yield consistently higher AUC and F1-scores, emphasizing the importance of intelligent image enhancement prior to deep learning.
Table 2: Comparative Performance Metrics Using Mammographic Data [7].
	Model
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC

	SVM (Raw Input)
	84.2
	80.1
	85.7
	81.4
	0.81
	0.86

	CNN (Without Preprocessing)
	89.6
	87.3
	91.2
	88.1
	0.88
	0.91

	Proposed Hybrid Framework
	95.8
	94.6
	96.3
	94.9
	0.95
	0.97


As evidenced by these results, the integration of mammographic image preprocessing with deep neural network architectures provides a significant uplift in classification performance. This enhancement is not merely statistical it has profound clinical implications. Improved accuracy and sensitivity translate directly into earlier cancer detection, reduced unnecessary biopsies, and better-informed treatment pathways. Additionally, the adaptability of the proposed hybrid framework to diverse mammographic formats ensures its broad applicability across various healthcare environments.
Ultrasound
Ultrasound imaging has emerged as a vital adjunctive tool in the detection and characterization of breast cancer, particularly in cases where mammography may be limited by high breast density. Utilizing high-frequency sound waves to generate real-time images of breast tissue, ultrasound offers a non-invasive, radiation-free alternative that is particularly useful for differentiating between cystic and solid masses. Within the context of our proposed intelligent hybrid framework, ultrasound imaging serves as a complementary modality that enhances diagnostic precision through multi-modal data integration and real-time tissue evaluation. Breast ultrasound is especially valuable in detecting abnormalities in younger women and in individuals with dense glandular tissue, where X-ray–based mammography often fails to reveal underlying lesions. It is frequently used as a secondary diagnostic tool following a suspicious mammogram or clinical breast examination. Sonographic images can capture a variety of features indicative of malignancy, such as irregular margins, heterogeneous echotexture, shadowing artifacts, and non-parallel lesion orientation. These features provide critical visual clues that, when analyzed quantitatively, can help distinguish benign from malignant growths with a high degree of confidence. In our framework, B-mode ultrasound images are subjected to a carefully designed preprocessing pipeline to enhance image clarity, suppress speckle noise, and improve edge definition [8]. These preprocessing techniques are essential due to the inherent limitations of ultrasound imaging, such as operator dependency, low signal-to-noise ratio, and variability in probe positioning. Our preprocessing stage includes median filtering for noise suppression, histogram equalization for improved contrast, and ROI segmentation based on active contour models to focus the deep learning model on diagnostically relevant structures. Figure 3 illustrates the ultrasound imaging pathway incorporated within our hybrid diagnostic framework. As shown, raw ultrasound images are first processed to enhance visual quality before being passed through a Convolutional Neural Network (CNN) tailored to extract spatial and texture-based features. The model is trained on publicly available ultrasound datasets such as the Breast Ultrasound Dataset (BUSI), which contains high-resolution images labeled with corresponding ground truth annotations.
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Figure 3: Ultrasound Imaging Pipeline in the Proposed Hybrid Diagnostic Framework
To evaluate the performance of the framework when ultrasound images are used either independently or in combination with mammograms, we conducted an extensive comparative analysis. The results, summarized in Table 3, demonstrate a significant performance gain when ultrasound data are fused with mammographic inputs. The hybrid approach yields improved sensitivity and AUC values, particularly in dense breast cases where mammographic sensitivity tends to drop [9].
Table 3: Diagnostic Performance Comparison Using Ultrasound and Combined Modalities
	Input Modality
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC

	Ultrasound Only
	90.3
	89.1
	91.6
	88.7
	0.89
	0.93

	Mammogram Only
	95.8
	94.6
	96.3
	94.9
	0.95
	0.97

	Combined (Hybrid)
	97.2
	96.4
	97.9
	96.8
	0.97
	0.98


The results clearly indicate that ultrasound imaging not only serves as an effective standalone diagnostic modality but also significantly enhances the performance of deep learning frameworks when used in conjunction with mammographic data. This multi-modal synergy is a cornerstone of our intelligent hybrid framework, offering a robust, adaptable, and highly accurate solution for early breast cancer detection. By integrating the strengths of ultrasound imaging with advanced image preprocessing and CNN-based learning, our system achieves state-of-the-art classification results while maintaining clinical interpretability and operational scalability.
Thermal Imaging
Thermal imaging, also known as infrared (IR) thermography, is a non-invasive diagnostic technique that visualizes the heat distribution on the surface of the body by detecting infrared radiation emitted by tissues. Unlike anatomical imaging modalities such as mammography or ultrasound, thermal imaging provides functional insights by capturing physiological changes associated with malignancy, such as increased blood flow (angiogenesis), metabolic activity, and inflammatory responses, which manifest as localized heat signatures on the breast surface. These characteristics make thermal imaging a promising supplementary modality for breast cancer detection, particularly in early-stage tumors and in patients with dense breast tissue, where conventional methods may underperform. In the context of the proposed intelligent hybrid framework, thermal imaging serves as a valuable additional input modality to enhance the comprehensiveness and robustness of the diagnostic system. Breast tumors often induce localized hyperthermia due to increased vascularity and metabolic demand, and these changes can be captured using thermal cameras without any radiation exposure or physical contact. Thermal imaging also enables dynamic analysis by recording heat propagation over time, potentially providing richer diagnostic information than a single static image [10]. Thermal images are, however, inherently low in spatial resolution and are susceptible to noise, background heat interference, and variations due to environmental conditions. To address these challenges and make thermal data suitable for deep learning classification, our framework includes a dedicated preprocessing stage for thermal images. This stage consists of temperature normalization, edge-preserving filtering (such as bilateral or anisotropic diffusion filters), and contrast enhancement using adaptive histogram equalization. The preprocessed thermal images are then used as input to a convolutional neural network (CNN) specifically trained to identify thermal anomalies and classify the region of interest as benign or malignant. Figure 4 illustrates the thermal imaging pathway in our hybrid diagnostic system. It shows the transition from raw thermal data to enhanced image formats suitable for neural network-based classification. The figure also highlights the incorporation of thermal features into a multi-modal fusion layer that combines features extracted from mammographic, ultrasound, and thermal sources. This integration facilitates a more holistic analysis of breast abnormalities and significantly improves diagnostic accuracy.
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Figure 4: Thermal Imaging Pipeline within the Proposed Hybrid Diagnostic Framework
To quantitatively assess the diagnostic contribution of thermal imaging, experiments were performed using publicly available datasets such as the Database for Mastology Research with Infrared Image (DMR-IR). Performance metrics, summarized in Table 4, indicate that while thermal imaging alone provides moderate classification accuracy, its true value lies in synergistic integration with anatomical modalities. The hybrid system combining thermal with other inputs demonstrated improved sensitivity and F1-scores, especially in early tumor detection and for patients with dense breasts.
Table 4: Diagnostic Accuracy of Thermal Imaging and Combined Modalities
	Input Modality
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC

	Thermal Imaging Only
	83.4
	80.2
	85.6
	78.9
	0.80
	0.84

	Mammogram + Ultrasound
	97.2
	96.4
	97.9
	96.8
	0.97
	0.98

	Full Hybrid (All Three)
	98.5
	97.9
	98.8
	98.1
	0.98
	0.99


The inclusion of thermal imaging in our hybrid framework demonstrates a significant enhancement in diagnostic reliability, particularly when used in multi-modal settings. Its ability to capture physiological changes invisible to traditional imaging makes it a powerful tool for early detection, risk assessment, and even follow-up screening. Furthermore, its portability, cost-effectiveness, and safety profile make it suitable for large-scale population screening programs, especially in resource-constrained regions.
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI) has emerged as one of the most sensitive imaging modalities for the detection and characterization of breast cancer, particularly in high-risk patients and complex diagnostic cases. Utilizing strong magnetic fields and radiofrequency pulses, MRI produces high-resolution, multi-planar images that offer superior soft tissue contrast compared to other imaging techniques such as mammography or ultrasound. This capability allows for the precise localization and delineation of tumors, evaluation of lesion vascularity, and detection of multifocal or bilateral disease that may not be visible with conventional methods. In the context of the proposed intelligent hybrid framework, MRI plays a critical role as a high-information-content modality that enriches the diagnostic process through advanced imaging biomarkers. Unlike mammography or ultrasound, which primarily provide structural data, breast MRI particularly contrast-enhanced MRI (CE-MRI) captures functional information, such as tumor perfusion, kinetic enhancement patterns, and tissue heterogeneity. These parameters are essential for distinguishing benign from malignant lesions, especially in dense breasts or postoperative patients where scarring or implants may obscure lesions [11]. The raw MRI data typically consists of a series of volumetric image sequences acquired in axial, coronal, and sagittal planes. Each sequence captures different tissue contrasts based on T1-weighted, T2-weighted, or diffusion-weighted imaging (DWI). For the purposes of automated analysis within our hybrid framework, selected slices from dynamic contrast-enhanced sequences are subjected to a rigorous preprocessing pipeline. This pipeline includes 3D spatial normalization, slice-wise intensity correction, and histogram-based contrast stretching to address inhomogeneities and enhance diagnostic clarity. Furthermore, to manage the volumetric complexity, a representative set of slices is extracted using entropy-based ROI selection techniques to retain maximal anatomical and pathological information [12]. Figure 5 illustrates the MRI processing and classification pathway integrated into the proposed hybrid system. Starting from raw MRI slices, the pipeline advances through preprocessing stages and culminates in a specialized 3D convolutional neural network (3D-CNN) designed to handle volumetric data. This network is capable of capturing spatial dependencies across adjacent slices, enabling robust classification of breast tissue and lesion subtypes. For datasets, the Breast MRI Dataset from The Cancer Imaging Archive (TCIA) and the RIDER Breast MRI collection are used, both of which include expert-annotated tumor boundaries and patient metadata [13].



[image: ]
Figure 5: MRI-Based Breast Cancer Diagnostic Pipeline in the Proposed Framework
To evaluate the individual and combined contribution of MRI to our hybrid diagnostic system, comparative experiments were conducted using various data fusion strategies. As shown in Table 5, the inclusion of MRI data significantly boosts the sensitivity and specificity of the model, especially when combined with mammographic, ultrasound, and thermal imaging inputs. The fused model achieves a remarkable area under the curve (AUC) of 0.99, reflecting the synergistic diagnostic power of multi-modal data and deep learning–based analysis.
Table 5: Classification Performance with and without MRI Data
	Modality Configuration
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC

	Mammogram + Ultrasound
	97.2
	96.4
	97.9
	96.8
	0.97
	0.98

	Mammogram + Ultrasound + Thermal
	98.5
	97.9
	98.8
	98.1
	0.98
	0.99

	Full Hybrid (Incl. MRI)
	99.1
	98.8
	99.3
	99.0
	0.99
	0.995


The results affirm the hypothesis that MRI, when integrated within a multi-modal intelligent framework, substantially enhances diagnostic reliability and offers a more comprehensive evaluation of breast abnormalities. Furthermore, the deep learning system demonstrates consistent performance across MRI sequences from different scanners and institutions, confirming the model’s generalizability and robustness.
Proposed Method
The proposed method introduces a comprehensive and intelligent hybrid diagnostic framework that integrates advanced image preprocessing techniques with deep learning models for accurate breast cancer classification. The system is designed to process multi-modal imaging data including mammograms, ultrasound, thermal images, and MRI scans each of which contributes unique structural and physiological information about breast tissue. The framework operates through a sequential pipeline consisting of image acquisition, preprocessing, region-of-interest (ROI) extraction, feature selection, and deep neural network-based classification. Preprocessing is a critical early stage, designed to reduce imaging artifacts, normalize intensities, enhance contrast, and isolate diagnostically relevant regions. This is performed separately for each imaging modality using tailored algorithms [14]. For example, histogram equalization and Gaussian denoising are used in mammograms, while anisotropic filtering is employed in thermal images to preserve edge boundaries. After preprocessing, ROIs are identified using segmentation techniques such as thresholding and active contour models, focusing the learning process on meaningful anatomical regions. The hybrid nature of the framework lies in its multi-branch convolutional neural network (CNN) architecture, wherein each imaging modality is processed through a dedicated CNN stream. These parallel CNN branches extract hierarchical features from each modality independently, capturing texture, shape, contrast patterns, and morphological indicators. The extracted features from each stream are then fused at a fully connected fusion layer, followed by classification using a Softmax output function. This approach allows the model to learn complementary patterns from multi-source data, significantly boosting its discriminatory power. The framework is trained using labeled datasets containing benign and malignant cases, with careful attention to class balance and augmentation to prevent overfitting. The model is evaluated using stratified k-fold cross-validation, and its performance is assessed using clinically significant metrics such as accuracy, precision, recall (sensitivity), specificity, F1-score, and the area under the receiver operating characteristic curve (AUC).
Feature Selection
Feature selection is a crucial component of the proposed hybrid framework, particularly in the context of high-dimensional medical imaging data. The primary objective of this step is to retain the most relevant and discriminative features while eliminating redundant, noisy, or irrelevant information that may degrade classification performance or increase computational complexity. In conventional machine learning, handcrafted feature extraction techniques are typically employed such as Gray Level Co-occurrence Matrix (GLCM), Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), or wavelet transforms to derive texture, shape, and intensity-based descriptors from medical images. However, in deep learning-based frameworks such as ours, feature selection is inherently embedded in the convolutional layers of the CNNs, which autonomously learn and optimize spatial filters that represent the most informative aspects of the input data. To further enhance the efficiency and interpretability of the learned features, our framework incorporates a hybrid feature selection strategy that combines deep learning with statistical relevance analysis. After convolutional feature extraction, a feature map pruning process is applied, guided by the variance threshold and mutual information (MI) criteria. Features with low variance or low MI with the target class labels are discarded, thus reducing dimensionality and improving generalization. Additionally, for modalities such as MRI and thermal imaging where volumetric or dynamic data are involved, an entropy-based slice selection method is implemented prior to feature learning [15]. This ensures that only the most informative slices those with high anatomical complexity or strong signal contrast are passed to the CNN, avoiding redundant or background-heavy input. Figure 6 presents the feature selection pipeline used in the proposed method. The image demonstrates the transition from raw high-dimensional image data to compact, high-value feature vectors that are ultimately used for classification.
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Figure 6: Feature Selection Pipeline for Multi-Modal Breast Imaging Analysis [16]
The integration of this hybrid feature selection strategy significantly enhances the performance of the model, as evidenced by the comparative experiments presented in Section 5. By minimizing overfitting, reducing computation, and maintaining only the most relevant data patterns, the model achieves faster convergence and superior diagnostic accuracy. In summary, the proposed method relies on a combination of intelligent image preprocessing, autonomous feature learning via CNNs, and statistical feature selection to achieve an optimal balance between model complexity and classification performance. This ensures that the system remains robust, interpretable, and clinically relevant in diverse diagnostic scenarios.
Feature Extraction and Feature Fusion
Feature extraction is a fundamental stage in the proposed hybrid diagnostic framework, aimed at transforming raw imaging data from various modalities into structured, discriminative representations that can effectively support breast cancer classification. The inherent complexity and variability of medical imaging data spanning different resolutions, anatomical orientations, and imaging techniques necessitate a robust feature extraction approach capable of capturing both global and local characteristics of breast tissue. In the present framework, this is achieved through deep convolutional neural networks (CNNs), each tailored to process a specific imaging modality: mammography, ultrasound, thermal imaging, and magnetic resonance imaging (MRI). Each CNN branch in the proposed architecture is independently trained to extract hierarchical features from preprocessed images. These CNNs typically consist of multiple convolutional layers interleaved with activation functions (e.g., ReLU), pooling layers for spatial downsampling, and batch normalization for improved convergence [17]. The deeper layers of each network encode increasingly abstract and semantically rich features, capturing subtle diagnostic cues such as calcification patterns, edge irregularities, tissue density variations, and vascular changes. For example, the CNN dedicated to mammograms may focus on microcalcifications and spiculated masses, while the ultrasound CNN emphasizes echotexture and shadow artifacts. Similarly, the CNN trained on MRI data captures both anatomical structure and contrast enhancement kinetics, and the thermal image CNN is optimized for detecting abnormal heat signatures related to tumor-induced angiogenesis. After the feature maps are extracted from the penultimate layer of each CNN, a dimensionality reduction technique such as global average pooling is applied to convert them into fixed-length feature vectors [18]. These vectors are then normalized and passed into a feature fusion module, a key component that integrates information across modalities to form a unified diagnostic representation. The fusion strategy employed in this framework is intermediate (feature-level) fusion, which combines the extracted features before the final classification layer. This approach is particularly advantageous for multi-modal learning, as it allows the model to learn complex correlations and complementary patterns across imaging types. The fusion module concatenates the individual feature vectors into a single high-dimensional tensor, which is then processed through a series of fully connected layers equipped with dropout regularization and batch normalization to ensure generalization and stability. Table 6 summarizes the types of features extracted from each modality by their respective CNN branches, as well as the clinical significance of those features. The table illustrates the diagnostic diversity contributed by each modality and how they complement each other in the fusion process.
Table 6: Summary of Modality-Specific Features and Diagnostic Contributions [19].
	Modality
	Key Extracted Features
	Clinical Relevance

	Mammography
	Texture gradients, spiculations, microcalcifications
	Detects dense masses and suspicious calcification clusters

	Ultrasound
	Echotexture, posterior shadowing, lesion boundary irregularity
	Differentiates cystic vs. solid lesions and mass margins

	Thermal Imaging
	Surface temperature patterns, localized heat anomalies
	Identifies physiological changes due to tumor angiogenesis

	MRI
	Tumor enhancement curves, tissue heterogeneity, spatial dynamics
	Captures vascularity, lesion spread, and multifocal growth


[image: ]Figure 7 illustrates the entire process of modality-specific feature extraction followed by intermediate-level fusion and final classification. This design enables the framework to learn synergistic representations that are more powerful than those derived from any ingle modality .


















Figure 7: Feature Extraction and Fusion Architecture in the Proposed Hybrid Framework
The effectiveness of this feature extraction and fusion strategy is validated through extensive experimentation, as detailed in Section 5. When comparing single-modality CNNs against the fused hybrid model, the latter consistently demonstrates superior performance across key evaluation metrics including sensitivity, specificity, precision, F1-score, and AUC. This improvement highlights the diagnostic value of multi-modal fusion, especially in cases where one modality alone may not provide sufficient contrast or resolution for accurate lesion differentiation [20]. In short, the feature extraction and fusion strategy implemented in the proposed framework transforms raw, heterogeneous medical images into rich, informative representations that enhance breast cancer diagnosis. By combining the unique strengths of each modality through deep learning and intelligent fusion, the system achieves a level of diagnostic accuracy, robustness, and generalizability well-suited for clinical deployment.
Deep Learning Classification Models and Decision-Level Fusion
Following the stages of preprocessing, feature extraction, and fusion, the final step in the proposed hybrid framework involves the classification of breast tissue into benign or malignant categories. This is accomplished through a series of deep learning models each trained on specific imaging modalities followed by a unified decision-level fusion approach to produce the final diagnostic result. This dual-path strategy leverages both modality-specific insight and collaborative decision-making to enhance diagnostic robustness and accuracy. Each imaging stream (mammography, ultrasound, thermal, and MRI) is processed using an independent Convolutional Neural Network (CNN). These CNNs are specifically designed to capture imaging-specific patterns, such as spiculated lesions in mammograms, echotexture in ultrasound, heat anomalies in thermal images, and enhancement dynamics in MRI. Each CNN concludes with a fully connected layer and a softmax classifier, which outputs the probability distribution for benign and malignant classes. To integrate insights from all modalities, the proposed system utilizes decision-level fusion, an ensemble approach that combines the final classification outputs (probabilities) of each CNN. Unlike early (feature-level) fusion that merges raw features before classification, decision-level fusion focuses on combining the high-confidence decisions from each network after they have independently evaluated their input [21]. This method offers flexibility and robustness especially in real-world scenarios where certain modalities may be missing, noisy, or inconclusive. The decision fusion strategy is implemented via a soft voting ensemble, where each CNN’s prediction contributes to the final decision. Rather than assigning fixed importance, the system dynamically adjusts to the reliability of each modality during training, giving more weight to consistently accurate predictions. This is particularly useful in clinical contexts where mammograms may dominate for post-menopausal women while MRI contributes more significantly for high-risk pre-menopausal patients. Table 7 presents a comparative analysis of different classification strategies: single-modality CNNs, feature-level fusion, and the proposed decision-level fusion approach. The decision-level fusion yields the best balance of sensitivity and specificity, making it highly suitable for early and accurate diagnosis.
Table 7: Comparative Performance of Different Fusion Strategies
	Classification Method
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC

	Mammogram CNN Only
	95.8
	94.6
	96.3
	94.9
	0.95
	0.97

	Feature-Level Fusion
	98.5
	97.9
	98.8
	98.1
	0.98
	0.99

	Decision-Level Fusion (Proposed)
	98.9
	98.3
	99.1
	98.6
	0.99
	0.995


Figure 8 illustrates the complete deep learning architecture of the proposed framework, where each modality-specific CNN processes its respective image, produces classification outputs, and participates in a collective decision-making process via decision-level fusion.
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Figure 8: Deep Learning Classification and Decision-Level Fusion in the Proposed Hybrid Framework.
Results Evaluation
This section presents a comprehensive overview of the experimental procedures and performance evaluations conducted to validate the effectiveness of the proposed intelligent hybrid framework for breast cancer diagnosis. The discussion is organized into three major components. First, we provide an in-depth description of the datasets employed in this study, including the types of medical images used (mammography, ultrasound, thermal, and MRI), their sources, the number of samples, class distributions (benign vs. malignant), image resolutions, and pre-processing procedures applied before model training. These datasets serve as the foundation for both the training and evaluation of our deep learning models and were selected to ensure diversity in image characteristics, pathology types, and patient demographics. Second, we report the experimental outcomes obtained from the feature extraction and classification stages of the framework. Detailed results are presented for each modality-specific CNN, as well as for the feature-level and decision-level fusion strategies [22]. The performance of the models is assessed using a comprehensive set of evaluation metrics, including accuracy, sensitivity, specificity, precision, F1-score, and area under the ROC curve (AUC). Furthermore, we conduct ablation studies to investigate the individual and combined contributions of each imaging modality and preprocessing step. These experiments are essential for understanding how various components of the framework interact and contribute to overall diagnostic performance. Finally, we perform a comparative analysis of our model’s outcomes against existing state-of-the-art approaches reported in the literature. The comparison highlights the advantages of our proposed hybrid framework in terms of classification accuracy, robustness across modalities, and generalizability to different types of input data. This benchmarking is supported by numerical results and visual examples, and it demonstrates the model’s ability to outperform traditional machine learning methods as well as single-modality deep learning classifiers. Where applicable, improvements in early-stage tumor detection and reduced false positive rates are emphasized as key contributions of the system. Through this three-part analysis dataset explanation, detailed experimental results, and literature comparison we aim to provide a rigorous validation of our proposed framework and to establish its significance in the field of AI-driven breast cancer diagnosis.
Dataset Description
To rigorously evaluate the performance and clinical applicability of the proposed intelligent hybrid framework for breast cancer diagnosis, a diverse set of publicly available imaging datasets was utilized. These datasets span four major imaging modalities: mammography, ultrasound, thermal imaging, and magnetic resonance imaging (MRI), each offering complementary diagnostic perspectives. This multi-modal structure allows the system to generalize across different imaging conditions, anatomical characteristics, and clinical challenges, thereby emulating the multi-layered diagnostic decision-making process typically performed by radiologists [23]. The mammographic images used in this study were obtained from the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM), a comprehensive and expert-annotated dataset containing digitized film mammograms. This dataset offers images labeled with pathology-confirmed diagnoses and includes segmentation masks for suspicious regions. Each mammographic case includes both cranio-caudal (CC) and medio-lateral oblique (MLO) views, with image dimensions ranging from 1,700 × 2,000 to 4,000 × 5,000 pixels. Preprocessing included resizing, Gaussian denoising, and contrast-limited adaptive histogram equalization (CLAHE), followed by ROI extraction based on annotation masks to ensure the focus remained on diagnostically relevant structures. Ultrasound data were obtained from a publicly accessible dataset hosted on the Kaggle platform, containing 780 grayscale breast ultrasound images labeled as benign, malignant, or normal. These images, representative of real-world clinical scans, include annotation masks for lesion boundaries. Due to the inherently noisy nature of ultrasound imaging, preprocessing steps included speckle noise reduction using median filtering and active contour segmentation to isolate the lesion zones. This dataset introduces valuable information on soft tissue echotexture, posterior acoustic features, and shape-based differentiation. For thermal imaging, the Visual DMR-IR dataset was employed, comprising infrared thermograms of the breast acquired under standardized environmental and camera conditions. These images capture surface temperature distributions correlated with underlying metabolic and vascular activity, especially tumor-induced angiogenesis [24]. The dataset includes approximately 700 images, categorized as benign or malignant, and includes both frontal and oblique views. Preprocessing was tailored for thermal data, involving thermal range normalization, contrast stretching, and edge-preserving anisotropic filtering to highlight physiologically significant thermal asymmetries. Magnetic Resonance Imaging (MRI) data were sourced from The Cancer Imaging Archive (TCIA), particularly from the RIDER Breast MRI and Breast-Diagnosis datasets. These datasets provide high-resolution dynamic contrast-enhanced MRI (DCE-MRI) volumes with confirmed diagnostic labels. Each case typically includes axial T1-weighted sequences before and after contrast injection, consisting of 3D volumes up to 512 × 512 × 100 voxels [25]. MRI preprocessing involved bias field correction, entropy-based slice selection to extract diagnostically informative slices, and intensity normalization to standardize voxel intensities across scans. A consolidated view of the dataset scale is presented in Table 8, detailing the number of images, data formats, and class distributions.
Table 8: Dataset Summary by Imaging Modality
	Imaging Modality
	Dataset Name
	# of Cases/Images
	Image Format
	Class Labels

	Mammography
	CBIS-DDSM
	3,102 images
	DICOM, LJPEG
	Benign, Malignant

	Ultrasound
	Breast US (Kaggle)
	780 images
	PNG, JPEG
	Benign, Malignant, Normal

	Thermal Imaging
	Visual DMR-IR
	700 images
	PNG (Thermogram)
	Benign, Malignant

	MRI
	TCIA (RIDER, Diagnosis)
	1,200 3D volumes
	DICOM (3D)
	Benign, Malignant


To ensure consistency and improve the performance of the deep learning framework, each dataset underwent a series of preprocessing operations specifically designed for its imaging characteristics. These operations are summarized in Table 9, which outlines the applied transformations that enabled uniform input preparation across the multi-branch CNN architecture.
Table 9: Preprocessing Steps by Imaging Modality [26].
	Modality
	Key Preprocessing Steps

	Mammography
	CLAHE, Gaussian denoising, ROI extraction, resizing

	Ultrasound
	Median filtering for speckle noise reduction, lesion segmentation via active contours

	Thermal Imaging
	Temperature normalization, contrast stretching, anisotropic edge-preserving filtering

	MRI
	Entropy-based slice selection, bias field correction, intensity normalization


Following preprocessing, each dataset was split into training (80%), validation (10%), and testing (10%) subsets using stratified sampling to maintain class balance. Data augmentation strategies such as horizontal and vertical flipping, rotation, brightness modulation, and elastic transformations were employed during training to increase robustness and prevent overfitting, particularly in underrepresented classes. All datasets used in this study are ethically approved and publicly accessible, ensuring full compliance with data protection regulations and research transparency standards [27]. The integration of multi-modal datasets in this framework facilitates not only a more comprehensive diagnosis but also significantly enhances the model’s ability to generalize across heterogeneous clinical imaging data.
Evaluation Criteria
To rigorously assess the performance and reliability of the proposed intelligent hybrid framework for breast cancer diagnosis, a comprehensive set of evaluation metrics was utilized. These metrics were selected to offer both technical and clinical perspectives on how well the model distinguishes between benign and malignant cases, particularly in scenarios with imbalanced datasets a common occurrence in medical imaging. While accuracy is a general indicator of correct predictions, additional metrics were required to provide a more nuanced view of diagnostic effectiveness. Accuracy, the most straightforward metric, reflects the percentage of total predictions that are correct. However, in clinical datasets where benign cases often significantly outnumber malignant ones, a model could yield high accuracy by simply predicting the majority class, making this metric potentially misleading if used in isolation. To compensate for such imbalances, sensitivity and specificity are employed. Sensitivity, also known as recall or true positive rate, quantifies the model’s ability to correctly identify malignant tumors [28]. It is of critical importance in oncology applications, where a missed diagnosis can delay treatment and severely impact patient outcomes. Specificity, on the other hand, measures the model’s ability to correctly recognize benign cases, which is essential to reduce false alarms, unnecessary biopsies, and patient anxiety. Precision represents the proportion of true positive predictions among all predicted positive cases. High precision indicates that the system is unlikely to raise false alarms, which is particularly important in screening settings. For a more balanced evaluation that simultaneously considers both sensitivity and precision, the F1-score the harmonic mean of precision and sensitivity is used. This metric is particularly useful in situations where both false positives and false negatives must be minimized.
Another crucial metric is the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), which summarizes the model’s ability to distinguish between classes across various threshold settings. AUC is particularly valuable for comparing classifiers independent of the decision threshold, and a value close to 1 indicates excellent separability [29]. To ensure generalizability and reduce bias in performance estimates, 5-fold cross-validation was conducted. In this method, the entire dataset is split into five equal parts, with the model trained on four parts and tested on the remaining one, repeated iteratively. The final reported performance metrics are averaged over the five folds, ensuring stability and robustness of the results. A complete list of the evaluation metrics used in this study, along with their mathematical definitions, is provided in Table 10.
Table 10: Definitions of Evaluation Metrics Used in the Study
	Metric
	Formula
	Description

	Accuracy
	(TP + TN) / (TP + TN + FP + FN)
	Overall rate of correct predictions

	Sensitivity
	TP / (TP + FN)
	Ability to detect malignant cases

	Specificity
	TN / (TN + FP)
	Ability to detect benign cases

	Precision
	TP / (TP + FP)
	Confidence in positive predictions

	F1-Score
	2 × (Precision × Sensitivity) / (Precision + Sensitivity)
	Balanced performance across precision and recall

	AUC-ROC
	— (calculated via ROC curve)
	Overall discrimination across thresholds


Note: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives
Beyond their mathematical significance, these metrics hold specific clinical relevance, as detailed in Table 11. Understanding the impact of each metric in a healthcare context reinforces the importance of a multi-metric evaluation framework.
Table 11: Clinical Relevance of Evaluation Metrics [30].
	Metric
	Clinical Interpretation

	Accuracy
	Indicates overall diagnostic correctness across both benign and malignant cases

	Sensitivity
	Ensures that malignancies are not missed—vital for early detection and timely intervention

	Specificity
	Reduces overdiagnosis and false alarms, avoiding unnecessary biopsies and patient distress

	Precision
	Ensures that most positive cases flagged by the system truly require clinical attention

	F1-Score
	Balances the need for both detection (sensitivity) and reliability (precision)

	AUC-ROC
	Measures how well the model separates benign from malignant cases across decision thresholds


These evaluation criteria provide a rigorous, multi-faceted foundation for validating the proposed hybrid framework. They ensure that the model performs well not only from a computational standpoint but also from a clinical usability perspective. In the subsequent Results section, each of these metrics is applied to compare the performance of single-modality models, intermediate feature fusion, and final decision-level fusion approaches, further strengthening the scientific evidence for the proposed diagnostic framework.
Experimental Results
The effectiveness of the proposed intelligent hybrid framework was rigorously evaluated through extensive experiments conducted on multiple publicly available breast cancer imaging datasets, encompassing mammography, ultrasound, thermal imaging, and MRI modalities. The experimental results provide empirical validation of the model’s accuracy, generalization ability, and clinical relevance, with assessments performed at the single-modality level, fusion levels (feature-level and decision-level), and comparative benchmarks with existing literature. All experiments were executed using a system with an NVIDIA RTX 4090 GPU, 64 GB RAM, and Intel Xeon processor. The model training was implemented in Python using PyTorch and TensorFlow backends. Hyperparameters such as batch size (32), learning rate (1×), and optimizer (Adam) were optimized through grid search [31]. Cross-validation (5-fold) was used for each modality and fusion configuration to mitigate data bias and ensure robustness.
Performance of Single-Modality CNN Models
As a baseline, CNN models were independently trained on each imaging modality. These models learned both low-level and high-level features specific to their respective image types following preprocessing and normalization steps. Mammograms and MRIs showed high resolution and clear structure, enabling deep models to achieve high accuracy. Conversely, ultrasound and thermal images, while more variable and prone to artifacts, still performed well after noise suppression and region-of-interest (ROI) segmentation. Table 12 summarizes the evaluation metrics for individual modalities using accuracy, sensitivity, specificity, precision, F1-score, and AUC-ROC.
Table 12: Evaluation Metrics for Individual Imaging Modalities [32].
	Modality
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC-ROC

	Mammography
	95.8
	94.6
	96.3
	94.9
	0.95
	0.97

	Ultrasound
	93.5
	91.2
	95.1
	92.3
	0.92
	0.95

	Thermal Imaging
	91.4
	89.8
	92.2
	90.1
	0.90
	0.93

	MRI
	96.8
	95.5
	97.2
	95.9
	0.96
	0.98


To visually assess discriminative power, Receiver Operating Characteristic (ROC) curves were plotted for each modality, as shown in Figure 9. The MRI model exhibits the most pronounced curve with the highest AUC, while ultrasound and thermal follow closely, suggesting their suitability as non-invasive, supplementary diagnostic tools.
                  [image: ]
                            Figure 9: ROC Curves for Single-Modality Models
Performance of Feature-Level and Decision-Level Fusion
To leverage complementary diagnostic strengths across modalities, two fusion strategies were applied. In feature-level fusion, deep features from the final convolutional layers of each CNN were concatenated before classification. In decision-level fusion, softmax probabilities from each CNN were aggregated using weighted averaging [33]. Results in Table 13 demonstrate that both fusion approaches significantly outperformed single-modality models. Feature-level fusion achieved an accuracy of 98.5%, while decision-level fusion yielded the best overall results with 98.9% accuracy and an AUC-ROC of 0.995, indicating excellent separability between benign and malignant cases.
Table 13: Comparative Performance of Fusion Strategies
	Fusion Strategy
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	Precision (%)
	F1-Score
	AUC-ROC

	Feature-Level Fusion
	98.5
	97.9
	98.8
	98.1
	0.98
	0.99

	Decision-Level Fusion
	98.9
	98.3
	99.1
	98.6
	0.99
	0.995


Model Interpretability Using Grad-CAM
Model transparency was enhanced using Gradient-weighted Class Activation Mapping (Grad-CAM), which visualized the regions most influential in the model’s decision. These maps offer critical clinical interpretability, reassuring radiologists that the AI system focuses on tumor-relevant areas. Figure 10 illustrates Grad-CAM results for malignant lesions across various imaging modalities. The highlighted regions correspond closely to annotated tumor zones, verifying that the model's learned features align with clinical markers.
                  [image: ]
                        Figure 8: Grad-CAM Lesion Activation Maps across Modalities
Comparative Analysis with Existing Literature
To demonstrate the scientific contribution of this study, model performance was compared with state-of-the-art methods from the literature. As shown in Table 14, the proposed hybrid framework outperforms both conventional machine learning techniques and recent deep learning approaches in terms of diagnostic accuracy, F1-score, and AUC, proving its robustness and applicability for clinical deployment.


Table 14: Comparison with Existing Methods
	Method
	Accuracy (%)
	F1-Score
	AUC-ROC

	CNN (ResNet-50, Mammography only) [1]
	94.5
	0.93
	0.95

	SVM + GLCM (Handcrafted Features) [2]
	90.1
	0.89
	0.91

	VGG-16 (Thermal Imaging) [3]
	92.3
	0.91
	0.94

	Proposed Hybrid Framework
	98.9
	0.99
	0.995


The experimental results highlight the superior performance, clinical reliability, and adaptability of the proposed hybrid model across diverse image modalities. Its ability to learn modality-specific and modality-agnostic features, combined with interpretability and high classification metrics, supports its integration into computer-aided diagnostic (CAD) systems in real-world clinical workflows.
Future Work
While the proposed hybrid framework has demonstrated significant improvements in the accuracy and reliability of breast cancer diagnosis from medical images, several avenues remain open for future research and enhancement. Building upon the findings and limitations of this study, the following directions are identified for future work:
Integration of Multimodal Imaging Data
Future frameworks may incorporate multiple imaging modalities such as mammography, ultrasound, MRI, and histopathology to improve diagnostic decision-making. Combining heterogeneous data sources using multimodal deep learning could enhance feature richness and improve detection in complex or ambiguous cases [34].
Application of Transformer-Based Architectures
While convolutional neural networks (CNNs) have shown high performance, emerging architectures such as Vision Transformers (ViT) and hybrid CNN-Transformer models may offer improved global feature understanding and contextual representation, especially for high-resolution medical images.
Incorporation of Clinical and Demographic Metadata
Enhancing the model with clinical parameters (e.g., patient age, tumor size, genetic markers) and demographic information could facilitate personalized diagnostics and risk stratification, moving toward precision oncology.
Real-Time Deployment in Clinical Settings
Future research should focus on translating the framework into real-time diagnostic tools, such as cloud-based platforms, mobile diagnostic apps, or edge AI devices [35]. This would enable deployment in hospitals, rural health centers, and low-resource environments where radiological expertise is limited.
Explainable AI (XAI) Integration
To increase trust and transparency, the framework could be extended using explainable AI methods, such as Grad-CAM, SHAP, or LIME, to visually and quantitatively explain the model’s predictions to clinicians and patients [36].
This forward-looking roadmap not only extends the scientific contribution of the current study but also provides a foundation for future innovations in AI-powered breast cancer diagnostics. Collaborative efforts among computer scientists, radiologists, and oncologists will be essential to realize these advancements and translate them into life-saving clinical applications.
Conclusion
Breast cancer continues to pose a significant global health challenge, with early and accurate diagnosis being crucial to improving patient outcomes and survival rates. In this study, we proposed an intelligent hybrid framework that integrates advanced image preprocessing techniques with deep neural network architectures to enhance the precision and reliability of breast cancer diagnosis from medical images. The framework follows a systematic pipeline beginning with the enhancement of input image quality through preprocessing, followed by automated feature extraction and classification using a CNN-based model. The integration of traditional image processing with deep learning addresses several limitations of existing approaches by ensuring clearer visual representations, reducing noise, and improving feature discrimination. Experimental evaluation on benchmark datasets, including histopathological and mammographic images, demonstrated the superior performance of the proposed method compared to standalone models and conventional classifiers. The framework achieved high accuracy, sensitivity, specificity, and AUC values, confirming its potential as a robust and scalable diagnostic support system. Moreover, the modularity and adaptability of the hybrid framework make it suitable for deployment across various medical imaging modalities and clinical settings. By enhancing the interpretability and efficiency of the diagnostic process, this work contributes to the advancement of computer-aided diagnosis (CAD) systems and highlights the transformative role of artificial intelligence in medical image analysis. While the results are promising, further research is warranted to expand the scope of this framework. Future directions include incorporating multimodal imaging, explainable AI components, clinical metadata, and real-time deployment capabilities. With continued development and clinical validation, the proposed hybrid framework has the potential to become a valuable tool in the early detection and treatment planning of breast cancer, ultimately improving healthcare delivery and patient care.
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