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ABSTRACT
Acetylcholinesterase ester enzyme (AChE) is actually a major enzymatic target for numerous
therapeutic drugs, playing a pivotal role in Alzheimer’s disease. Researchers are developing new
drugs and other strategies to treat this disease. Acetylcholinesterase ester enzyme (AChE)
inhibitors (ChEIs) are the primary treatment for Alzheimer’s Disease. These drugs work by
slowing Ach turnover, mitigating the effects of cholinergic neuron degeneration, and enhancing
synaptic transmission. This review is conducted from the literature published from 1990 to 2024.
Research work on human settings is needed to be addressed for authentication of Alzheimer
Disease. Hence published data in this review confirms that Acetylcholinesterase ester enzyme.
This review examines literature published from 1990 to 2024, highlighting recent advancements
in AChE-targeted therapies. While substantial progress has been made, further research in human
setting is necessary to validate the therapeutic efficacy of AChE inhibitors in Alzheimer’s disease.
The findings presented in this review confirm the significance of AChE as a central target in AD
treatment and emphasize the need for continued investigation. Additionally, recent studies have
explored the potential of natural compounds and synthetic derivatives as a novel AChE inhibitor,
aiming to enhance drug efficacy and reduce side effects. Advancements in AI-driven drug
discovery and computational modeling have also contributed to identifying promising AChE-
targeted candidates. These developments underscore the ongoing efforts to improve therapeutic
strategies for Alzheimer’s disease.
Keywords: Acetylcholinesterase (AChE), Alzheimer’s Disease, AChE Inhibitors, Cholinergic
Neurotransmission, Multi-target Drug Design, Neurodegenerative Disorders

INTRODUCTION
The cholinergic hypothesis was first articulated
more than 20 years ago.[1] Acetylcholine is
thought to be one of the principal
neurotransmitters of the brain. [2]
Acetylcholine plays an important role in the
peripheral and central nervous systems [3] that
developed very early in phylogenic history. [4]
It is located at postsynaptic neuromuscular
junctions, especially in muscles and nerves.[5]
In a healthy brain, it is held that

acetylcholinesterase has a predominant activity,
whereas butyrylcholinesterase is believed to
exert a relatively small influence in the
homeostatic regulation of acetylcholinesterase
in the brain. However, butyrylcholinesterase
activity starts to elevate in Alzheimer's patients
but otherwise, acetylcholinesterase activity
remains stable or declines.[6] Hydrolases are
classified in this context, which cleaves the
ester bond of carboxylic acid esters.[7]
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Alzheimer's disease, being multifactorial, is a
complex and prevalent neurological disorder
affecting the world's population.[8] This
disease is one of the most common forms of
dementia that affects about 10% of those over
the age of 65 [9] with an estimated global
occurrence of 24.3 million cases.[10]
Worldwide Health Human Problem Affected
for Many Countries and People. [11] The
management of Alzheimer Disease has been
greatly applied with AChEh inhibitors.[12]
Currently, Alzheimer's disease diagnosis is
mainly based on evidence of neurochemical
pathology in affected tissue but also based on
the mechanism of action of therapeutic drugs
it continues to depend.[13] Until recently the
only established function of
acetylcholinesterase was the termination of
cholinergic neurotransmission.[14] [15] As the
cholinergic system plays an important role in
regulation of learning and memory
process.[16].[17] Inhibitors of enzyme
acetylcholinesterase are presently used as long
term symptomatic treatment for patients with
AD.[18] AChEIs are the most promising
methods of combating AD.[19] The process

of excitatory and inhibitory response takes
place within the synaptic gap whereby the
impulses are transduced in a distinct manner
between axons.[20]
Literature-rich reports had indicated that some
of the Acetylcholinesterase ester enzymes
neuroprotection effects were related to
inhibiting enzyme activity. Thus, recent
therapeutic techniques have shifted away
attention from amplifying cholinergic activity
alone toward modulating noncholinergic
functions as these evolve for developing newer
drugs that modify the disease course of AD.
[21]
This review addresses how cholinesterase (ChE)
inhibitors drive neuroprotective benefits that
these patients with AD may avail themselves of.
Also presented are emerging developments
toward possible future drug candidates that
will have neuroprotection ability and were
designed particularly for treating AD.[21]
The (WHO), also, has forecast that this figure,
which now stands at 24 million, will escalate to
more than a doubling figure by the year 2030.
[22]

Figure.1 Schematic illustration of a multi-target directed ligand strategy for drug design in against
Alzheimer’s disease [23]

The orthodox approach of one-drug-one-target
is only temporarily symptomatically relieved
and does not stop progressions of the disease,
such as Donepezil, Rivastigmine, Galantamine,
Memantine [23].Now a days research is
oriented towards Multi-target directed ligands
approach for the treatment of Alzheimer’s
disease (Figure 1). This effect and prevalence

of Alzheimer's disease keep on increasing, and
it is estimated to reach around 13.8 million
people by 2050 in the United States (US)
alone. [24, 25]
Furthermore, neuropsychiatric symptoms
emerge over time while independence
diminishes for the patient. Diagnosis can then
be made by combining at autopsy as evidence
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of the disease, even though we cannot
completely define it at this point. [26] [27] [28]
(ACHE) and (BCHE) kinds of
acetylcholinesterase differ from each other in
their preferences toward the respective
substrates: former prefers hydrolyzing
acetylcholine has a faster rate than the latter
which prefers hydrolyzing butyrylcholine [7] It
attaches to the acetyl moiety of the
acetylcholine, and cleaves the bond between
the acetyl moiety and the choline moiety.
Choline is released. Water can then substitute
for the acetyl grouping on the serine, and
cleave off the acetyl group while reconfiguring
the serine. [21] [29]
Each monomer's carboxy-terminal has GPI
covalently attached to it, with the PI part
functioning as the hydrophobic anchor. [30] A
bacterial PI-specific phospholipase C can
selectively solubilize the dimer. [31] his
approach offers a remarkable degree of
purification ahead of the affinity
chromatography step. [32]
The coordinates (1B41) of the monomeric
rhAChE structure, resolved in complex with
fasciculin-II, were used [33, 34] The translation
search identified monomers in the ASU, with
an R-factor of 41.7% and a correlation
coefficient of 60.9% [35] Protein atoms were
refined in CNS with stimulated annealing and
NCS constraints, followed by conjugate
gradient minimization and manual water
molecules addition using O [36] [20] An
overall R-factor of 20%. With an Rfree of 24.6
was obtained by fitting the structure using
COOT and further refining it using REFMAC
[37]

Acetylcholinesterase as a Therapeutic target
A crucial enzyme responsible for hydrolyzing
the neurotransmitter Ach into acetate and

choline, terminating cholinergic transmission.
It is essential for the central and peripheral
nervous system. Given its importance in
regulating cholinergic function, it is a key
curative focus for various conditions. [38, 39]

Challenges and issues
Epidemiological survey indicates that 7-10% of
adults over 65 and 50-60% of people over 85
have AD. [22] Affecting around 35 million
people globally, Dementia affects 7.3 million
people throughout Europe . [40]
Learning, memory, cognition, sleep-wake cycles,
cerebral cortex growth and activity, and
cerebral blood flow are all impacted by
cholinergic transmission.[41]Acetylcholine
lowers heart rate, relaxes muscles, and
stimulates smooth muscle contractions in the
gastrointestinal, urinary and ocular tracts.[42]

Objective
This analysis aims to emphasize significant
impact of cholinesterase enzyme in
neurocognitive diseases. This information
provides an opportunity for a deeper
understanding of these conditions.

Methodology
A review on Acetylcholinesterase enzyme for
Alzheimer Diseases has been done. A
comprehensive literature review was performed
to understand various approaches to
Alzheimer Diseases. Previous data related to
the topic was studied and collected via research
articles and review articles. The sources used
for data collection included Google Scholar,
Human Genomics, Scientific Research, Sci-
Hub, Science direct.com and Research Gate.
Published research articles and regulatory
guidelines on pharmaceutical validation were
reviewed to gather the relevant data.

Results
After review of all the following articles and literature, below data is gathered in table 1 :
Table 1. Findings and Results of Literature Survey

Study Results Discussion Bio marker Change in AD Relationship
with AChE

STUDY
01

Slowed down
AChE activity
recognized in AD
Patients compared
to controls.

These results
provide credence to
the idea that AChE
is essential to the
pathophysiology of

Amyloid-β plaques Increased AChE may
promote amyloid
aggregation.
[64]
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Ad.

STUDY
02

Correlation found
between AChE
levels and
cognitive decline
in AD patients.

The precise
mechanism driving
this association
requires more
investigation.[65]

Tau protein Increased AChE may
contribute to Tau
phosphorylation.

STUDY
03

Inhibition of
AChE activity in
animal models of
AD resulted in
improved cognitive
function.[67]

These results
suggest that AChE
inhibitors may be
effective therapeutic
agents for AD.[68]

Neuroinflammation
markers

Increased AChE may be
involved in
neuroinflammati
on processes.[66]

STUDY
04

AChE Inhibitor
Efficacy Donepezil
improved cognitive
scores in mild-
moderate AD.[69]

AChE inhibition
enhances
cholinergic
transmission,
slowing decline.

Acetylcholine levels Increased Direct: AChE
inhibitors block
enzyme activity,
increasing
synaptic
acetylcholine.
[70]

STUDY
05

Amyloid-β
Accumulation Aβ
plaques correlate
with reduced
AChE activity in
cortical
regions.[71]

Aβ aggregation
disrupts cholinergic
neurons, reducing
AChE
expression.[72]

Amyloid-β plaques Increased Indirect: Aβ
toxicity
downregulates
AChE synthesis
in surviving
neurons.[73]

STUDY
06

Tau
Hyperphosphoryla
tion High p-tau
levels linked to
accelerated AChE
decline in
CSF.[74]

Tau pathology
disrupts axonal
transport, impairing
AChE
distribution.[75]

p-tau,
CSF AChE

Increased
Decreased

AChE loss
correlates with
tau-driven
neurodegeneratio
n.

STUDY
07

Neuroimaging
(MRI)
Hippocampal
atrophy associates
with reduced
AChE activity.

Neuronal loss in
AD reduces AChE-
containing neurons.

Hippocampal
volume

Decreased Structural
atrophy parallels
cholinergic
system
degeneration.
[76]

STUDY
08

APOE4 Genotype
APOE4 carriers
show faster AChE
decline vs. non-
carriers.

APOE4 exacerbates
amyloid pathology,
accelerating
cholinergic
dysfunction.[77]

APOE4 expression Increased Genetic risk
amplifies AChE
loss via amyloid-
mediated
toxicity.[78]

STUDY
09

Inflammatory
Cytokines TNF-α
and IL-6 levels
inversely correlate
with AChE
activity.

Neuroinflammation
upregulates AChE
in glial cells,
worsening
neurodegeneration[
79]

TNF-α, IL-6 Increased Pro-inflammatory
cytokines induce
AChE
overexpression,
promoting
neuronal death.

STUDY Oxidative Stress Oxidative damage 8-OHdG, MDA Increased ROS modify
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10 Markers Lipid
peroxidation
products correlate
with AChE
dysfunction.

impairs AChE
enzyme function
and cholinergic
signaling.

AChE structure,
reducing catalytic
efficiency[80]

STUDY
11

CSF Biomarkers
Low Aβ42 and
high t-tau predict
reduced AChE
activity.

CSF biomarker
profiles reflect
cholinergic
degeneration in
early AD.

Aβ42
t-tau

Decreased
Increased

AChE activity
loss aligns with
amyloid/tau
pathology.[81]

STUDY
12

Longitudinal
Cognitive Decline
Faster MMSE
decline in patients
with low baseline
AChE activity.[82]

ChE loss predicts
progression from
MCI to AD. [83]

MMSE scores Decreased AChE deficiency
exacerbates
cognitive
impairment via
disrupted
neurotransmissio
n.

STUDY
13

Animal Models
(Transgenic Mice)
Tg2576 mice show
AChE
hyperactivity near
amyloid plaques.

Aβ deposition
induces
compensatory
AChE
upregulation,
worsening toxicity

Amyloid plaques,
AChE activity

Increased Paradoxical
AChE increase
near plaques may
accelerate
neuronal damage.

STUDY
14

Synaptic Markers
Synaptophysin loss
correlates with
AChE inhibitor
resistance. [84]

Synaptic failure
limits efficacy of
AChE-targeted
therapies.

Synaptophysin Decreased AChE inhibitors
require intact
synapses for
optimal effect.

STUDY
15

Cholinergic PET
Imaging Reduced
AChE activity in
basal forebrain
correlates with
memory deficits.

Cholinergic
denervation drives
early AD symptoms.

Cortical AChE
binding

Decreased PET confirms
regional AChE
loss as a
biomarker of
cholinergic
decline. [85]

STUDY
16

MicroRNA
Regulation miR-
132 targets AChE
mRNA; miR-132
is downregulated
in AD. [86]

Epigenetic
dysregulation of
AChE contributes
to pathology.

miR-132 Decreased Loss of miR-132
increases AChE
expression,
promoting
neurodegeneratio
n.

STUDY
17

Antioxidant
Therapies
Vitamin E
supplementation
stabilizes AChE
activity in AD
patients.

Antioxidants
mitigate oxidative
inhibition of
AChE.

Antioxidant capacity Increased Reduced
oxidative stress
preserves AChE
function. [87]

STUDY
18

Autopsy Findings
Post-mortem AD
brains show 40-
60% AChE loss in
hippocampus. [88]

Cholinergic deficit
is a hallmark of
advanced AD
pathology.

Hippocampal AChE Decreased AChE loss
correlates with
Braak staging and
clinical severity.
[89]
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STUDY
19

Combination
Therapy AChE
inhibitors +
memantine slow
biomarker
progression vs.
monotherapy. [90]

Synergistic effects
protect neurons
from excitotoxicity
and cholinergic loss.
[91]

Aβ/tau Stabilized Memantine
offsets glutamate
toxicity,
enhancing AChE
inhibitor efficacy.

STUDY
20

Vascular
Comorbidities
Hypertension
accelerates AChE
decline in AD.[92]

Vascular insults
exacerbate
cholinergic
dysfunction.

White matter lesions Increased Hypoperfusion
reduces AChE
synthesis in
vulnerable
regions. [93]

STUDY
21

Gut-Brain Axis
Probiotics improve
AChE activity in
AD models via
reduced
inflammation

Gut microbiota
modulate
cholinergic
signaling through
anti-inflammatory
effects.[94]

Systemic
inflammation

Decreased Gut-derived
metabolites
regulate AChE
expression.

STUDY
22

Sex Differences
Women show
greater AChE
inhibitor response
than men.

Estrogen enhances
cholinergic
transmission and
AChE inhibitor
efficacy.

Cholinergic receptor
density

Increased Hormonal factors
influence AChE
dynamics and
treatment
outcomes. [95]

STUDY
23

Mitochondrial
Dysfunction
Impaired
mitochondria
reduce ATP-
dependent AChE
synthesis. [96]

Energetic failure in
AD neurons limits
AChE production.

ATP levels Decreased Mitochondrial
deficits directly
impair
cholinergic
enzyme systems.

STUDY
24

Epigenetic
Modifications
Hypermethylation
of AChE promoter
reduces enzyme
activity in late-stage
AD

DNA methylation
changes contribute
to AChE variability.

DNA methylation Increased Epigenetic
silencing of
AChE worsens
cholinergic
transmission. [97]

STUDY
25

NMDA Receptors
AChE inhibitors
upregulate NMDA
receptors,
improving synaptic
plasticity. [98]

Cross-talk between
cholinergic and
glutamatergic
systems enhances
cognition.

NMDA receptor
expressio

Increased AChE inhibition
indirectly
modulates
glutamate
signaling.

STUDY
26

Proteomic
Profiling AChE
interacts with
amyloid precursor
protein (APP) in
AD synapses

AChE-APP
complexes may
promote
amyloidogenic
processing.

APP-derived
fragments

Increased AChE accelerates
Aβ aggregation,
creating a
feedback loop.
[99]

STUDY
27

Nanotherapy
Nanoparticle-
delivered AChE

Enhanced drug
delivery systems
optimize AChE

Drug concentration
in CSF

Increased Nanocarriers
overcome BBB
limitations,
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inhibitors improve
brain
bioavailability
[100]

targeting. boosting AChE
inhibitor efficacy.

STUDY
28

Sleep Disorders
Sleep deprivation
reduces AChE
activity in
preclinical models.
[101]

Poor sleep quality
exacerbates
cholinergic
dysfunction in AD.

Slow-wave sleep Decreased Sleep restoration
may preserve
AChE function.

STUDY
29

Diabetes Mellitus
Insulin resistance
correlates with
AChE
hyperactivity in
AD.

Hyperglycemia
promotes AChE
glycosylation,
altering enzyme
activity.

Advanced glycation
end-products (AGEs)

Increased Metabolic
dysfunction
exacerbates
AChE-mediated
neurodegeneratio
n

STUDY
30

Clinical Subtypes
Atypical AD
variants (e.g.,
posterior cortical
atrophy) show
distinct AChE
loss.

Regional AChE
patterns vary with
clinical phenotypes.

Parietal AChE in
visual variants

Decreased AChE
distribution
aligns with
symptom-specific
neurodegeneratio
n.

STUDY
31

Neurotrophic
Factors NGF
therapy restores
AChE activity in
cholinergic
neurons.

Trophic support
rescues AChE
expression in early
AD.

NGF signaling Increased NGF promotes
survival of AChE-
producing
neurons.

STUDY
32

Metal Ion
Interactions
Aluminum
exposure increases
AChE aggregation
in AD models.
[102]

Environmental
toxins exacerbate
AChE dysfunction.

Metal-induced
protein aggregation

Increased Aluminum binds
to AChE,
promoting
misfolding and
toxicity.

STUDY
33

Pharmacogenomic
s CYP2D6
polymorphisms
predict AChE
inhibitor
metabolism and
efficacy.

Genetic variability
influences
therapeutic
outcomes.

Drug plasma levels Increased
Decreased

Personalized
dosing based on
genetics optimizes
AChE inhibitor
benefits.[103]

STUDY
34

Neurofilament
Light Chain (NfL)
Elevated serum
NfL correlates with
AChE inhibitor
non-response.
[103]

Axonal
degeneration
reduces cholinergic
resilience to
therapy.

Serum NfL Increased High NfL
indicates
widespread
neuronal damage,
limiting AChE-
mediated synaptic
repair.

STUDY
35

TDP-43
Proteinopathy

Co-pathologies
exacerbate

TDP-43 inclusions Increased TDP-43
mislocalization
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Discussion
Since the identification of cholinergic
deficiency in Alzheimer’s disease (AD),
acetylcholinesterase (AChE) has been
extensively investigated in tissues.[43]
Acetylcholinesterase is an enzyme associated
with senile plaques.[44] Alzheimer’s disease
characterized by significant decline in
components of cholinergic system.[45] It was
first discovered by Dr. Alois Alzheimer in 1901,
a German psychiatrist who described its typical
symptoms in one of his patients [46] This

disease is one of the most widespread single
cause of dementia in our ageing society [47]
occurring with advancing age. [48] The basic
symptom of this disease i.e. Define in cognitive
abilities caused by disrupted cholinergic
neurotransmission. [49] One important factor
in neurological illness is acetylcholinesterase
[50] Its clarification will improve our
knowledge of the pathophysiology and etiology
of these conditions. [51]This enzyme performs
a significant roles that are shared by majority
of illness that have been characterized,

TDP-43 aggregates
coexist with AChE
loss in limbic
regions of AD
patients.

cholinergic
dysfunction and
cognitive decline.

impairs AChE
mRNA transport
in neurons [104]

STUDY
36

Short-Chain Fatty
Acids (SCFAs)
Butyrate
supplementation
restores AChE
activity in AD
rodent models.

Gut-derived SCFAs
modulate
neuroinflammation
and cholinergic
gene expression

Butyrate levels . Increased SCFAs enhance
AChE synthesis
via histone
deacetylase
inhibition.

STUDY
37

CRISPR-Based
Gene Editing Post-
COVID AD
patients show
accelerated AChE
decline vs.
controls.

Targeted AChE
downregulation
may mitigate
amyloid-driven
pathology.

AChE mRNA Decreased Reducing AChE
expression limits
its pro-
amyloidogenic
interactions.

STUDY
38

Exosomal AChE
Plasma exosomes
from AD patients
carry higher AChE
levels than healthy
controls.

Exosomal AChE
may reflect early
neuronal stress in
AD.

Exosomal AChE Increased Neurons release
AChE-containing
exosomes under
stress, serving as a
liquid biopsy
marker. [105]

STUDY
39

Circadian Rhythm
Disruption
Nocturnal AChE
fluctuations are
blunted in AD
patients with sleep
disturbances.
[106]

Disrupted circadian
regulation impairs
cholinergic
recycling

Diurnal AChE
variation

Decreased Circadian clock
genes (e.g.,
BMAL1) regulate
AChE expression;
dysregulation
worsens AD.

STUDY
40

Curcumin’s Dual
Effects Curcumin
inhibits AChE and
reduces amyloid
plaques in AD
models.

Natural
polyphenols offer
multi-target benefits
for cholinergic and
amyloid pathways.

Amyloid burden,
AChE activity

Decreased Curcumin
competitively
binds AChE’s
active site while
suppressing Aβ
aggregation.
[107]
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including involvement in oxidative stress and
inflammation, apoptosis and abnormal
protein adhesion. [52] Besides inhibiting the
enzyme, the available AChE inhibitors possess
several collaborative effects that will perhaps
help delay the disease progress.[53] It is
thought generally that they act symptomatically
and not via causes. [41] Some of these,
however, may make possible their causal use.
[54] AchE contains a uniquely designed active
site and a PAS. The majority of these MTDLs
are designed with AChE as their target. [55]
Because this enzyme is crucial to the
pathogenesis of the majority of
neurodegenerative disorders, effort to develop
and find new medications that target it may
result in medication that is helpful in treating
other brain diseases [50]
Phytochemical variability tends to be the
problem when plant extracts are used to try
and treat these diseases. [56] The extracts
exhibit variable degrees of potency in AChE
inhibition as well as other antioxidant or anti-
inflammatory activities so that the results of
individual extracts tend to be inconsistent. [57]

Conclusion
Alzheimer disease is major contributor for
dementia. [58] It is responsible for up to 75%
of all neuro-dysfunction cases. [59] For two
decades, rigorous investigation aiming to
establish the casual factor of this disease have
been carried out, hoping to produce safe and
efficacious drug therapies. [60]. The
acetylcholinesterase is among the important
mediate the function and response of
nerves.[61].It is main enzyme responsible for
neurotransmitter acetylcholine hydrolysis and
the primary target of almost all clinical drugs
for AD [62] [63] AChE overexpression among
cells do not trigger apoptosis, and those
expressing an AChE at basal level normally
develop. Needs research work based on human
settings to be addressed for authentication of
Alzheimer's Disease. Thus, published data in
this review shows AChE which hydrolyses
acetylated esters involved in the physiology of
conditions like Alzheimer diseases which cause
Dementia, Cognitive impairment, and
Behavioral and Psychological symptoms
through it. It is clear that the cholinergic
signaling is significant in AD. But further

research is needed to develop more effective
therapeutic agents. The enzyme has several
important functions that are common to most
of the described disorders. Studies should be
directed towards understanding the cause of
the differential response to AChE inhibitors in
depressive disorders. In these whole studies, a
substantial progress has been observed. The
evolution of acetylcholinesterase inhibitors
(AChEIs) from 1990 to 2024 reflects a
transformative journey in Alzheimer’s disease
(AD) therapeutics, marked by both significant
achievements and ongoing challenges. Initially
grounded in the cholinergic hypothesis which
identified acetylcholine depletion as a core
driver of cognitive decline early AChEIs like
tacrine provided foundational proof-of-concept
but faced limitations due to hepatotoxicity and
poor tolerability. Future research must
prioritize precision targeting of peripheral vs.
central AChE isoforms, combination
therapies that bridge symptomatic and disease-
modifying effects, and real-world efficacy
studies in diverse populations. Ultimately,
while AChEIs remain indispensable for
symptomatic management, their convergence
with novel AD therapeutics heralds a new era
of holistic intervention strategies aimed at not
just mitigating decline but altering AD’s
trajectory.
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